We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Conditions

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What are Myofibrils?

By Jessica Gore
Updated: Mar 03, 2024

Formerly known as sarcostyles, myofibrils are long, bundled tubes of cytoskeleton that run the length of striated muscle fibers. Like all cytoskeletons, myofibrils function in cellular support, movement, and intra-cellular transport. To facilitate this purpose, they are made up of long chains of regular, repeating units known as sarcomeres. These units house the contractile apparatus of the cell. Two microfilaments, primarily composed of actin and myosin, interact within the sarcomeres to produce cellular contraction — enabling movement of the cell, the muscle, and the entire organism.

The two microfilaments that make up the myofibril are generally referred to as thick and thin filaments. Thick filaments are composed mostly of myosin protein and reside near the center of the sarcomere. Thin filaments are made up of three proteins, most notably actin, and sit at the outer edges of the sarcomere. The border between sarcomeres is known as the Z line, a dark band of material that acts as a base for the thin filaments.

Muscle cells themselves are analogous to other cells in a number of ways, however, their increased size and high degree of specialization results in many of their attributes being given names that are particular to muscle cells. This usually involves the use of the prefix 'sarco-.' The cytoplasm of a muscle cell, therefore, becomes the sarcoplasm; the endoplasmic reticulum is known as the sarcoplasmic reticulum; and the cellular membrane is often termed the sarcolemma.

Myofibrils reside within the sarcoplasm and typically occupy most of the space within the muscle cell. Running parallel with the myofibrils are infoldings of sarcolemma known as transverse tubules, or T tubules. These internal channels primarily provide a pathway for neurons. Following the same pathways as other structures within the cell, a specialized organelle known as sarcoplasmic reticulum runs alongside the T tubules. The sarcoplasmic reticulum acts as a storage system for calcium ions.

When a T tubule carries an electrical signal, known as an action potential, into the muscle fiber, the sarcoplasmic reticulum responds by releasing calcium ions into the sarcoplasm. Once they are moving freely through the sarcoplasm, the calcium ions are able to bind to specialized structures on the actin and myosin proteins within the myofibrils. In doing so, they pull the thin filaments toward the center of the sarcomere, effectively shortening the whole unit. This process is known as the sliding filament model of muscular contraction.

The Health Board is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By SimpleByte — On Feb 25, 2014

@Nefertini - Myofibril hypertrophy is a way athletes increase their muscle size and strength by increasing the number of myofibrils. It's achieved through strength training and heavy lifting. Sarcoplasmic hypertrophy increases muscle mass by increasing the fluid in the muscles. It's achieved through performing a high number of repetitions in weight lifting rather than by increasing a higher weight. Bodybuilders usually prefer sarcoplasmic hypertrophy while power lifters usually prefer myofibril hypertrophy.

By Nefertini — On Feb 24, 2014

What is myofibril hypertrophy?

Share
https://www.thehealthboard.com/what-are-myofibrils.htm
The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.

The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.