We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is the Function of the Pons?

By M. West
Updated Mar 03, 2024
Our promise to you
TheHealthBoard is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At TheHealthBoard, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The three primary functions of the pons are acting as a pathway for signals transferring between the cerebrum and the cerebellum; helping transmit cranial nerve signals out of the brain and into the face and ears; and controlling certain involuntary functions like respiration and consciousness. Though the pons is a small part of the brain it is a very important one. Its location in the brain stem makes it ideally suited to conduct signals in and out, and it serves as the point of origin for many important cranial nerves. Any time people chew, swallow, breathe, and sleep they are, in most cases, using their pons. The pons also plays a role in hearing.

Location in the Brain

In humans and most other animals, the pons is located in the upper part of the brain stem. It sits between the medulla oblongata and the thalamus, and in many ways acts as a sort of link between these two areas. The pons is made primarily of what is known as “white matter,” which is different, both functionally and biologically, from the “grey matter” of the cerebral brain, and it’s generally pretty small, measuring about an inch (2.5 cm) in most adults. Its size and location make it idea for controlling and directing many nerve signals, most of which relate to the face and respiratory system.

As a Nerve Pathway

The pons serves as the point of origin for four of the twelve major cranial nerves: the trigeminal, the abducens, the facial, and the vestibularcochlear. It acts as a pathway for these nerves and carries their signals into the main cortex. Most of these signals relate to facial functions, including movement and sensation in the eyes and ears.

In most cases the trigeminal nerve, which is the fifth cranial nerve, controls feeling in the face and also controls many of the muscles involved in biting, chewing, and swallowing. General facial expressions and muscular contractions are controlled by the facial nerve, though, which is the seventh sequential cranial nerve. The abducens, or sixth, nerve is a bit more specific in that it is strictly a motor nerve, and its primary function is eye movement. It is credited with allowing the eye to look far to either side. In none of these tasks does the pons itself actually play an active role, but it is essentially the pathway for signals to get from the nerves to the brain — which is a crucial step.

In a similar way the pons plays a role in hearing, too, in that it also conducts signals from the vestibularcochlear nerve. This sensory nerve has two components. The “cochlear” part provides hearing by sending sound transmissions from the ear to the brain, while the “vestibular” part sends information from the inner ear regarding spatial position in order to facilitate balance and coordination. If the nerve is damaged or if the pons crosses its signals, a person might feel dizzy or motion sick.

Conducting Signals Out

Just as the pons carries signals from the nerves into the brain, so also does it take commands from the brain and relay them to the nerves. As a result it serves as something of a clearinghouse for information traveling both to and from the largest areas of the face. The main role of the white matter here is to organize the signals, prioritize them, and translate them completely and accurately.

Controlling Involuntary Functions

This structure also has influence over a number of involuntary basic life functions related to respiration and consciousness. An area of the pons known as the reticular formation controls regulates the sleep/wake cycle, for instance, which influences fatigue, motivation, and degree of alertness. Some members of the medical community think that this area may play a role in dreaming and the formation of dreams, too, but not much research has been done to prove this.

Another function of the pons is respiration. Its apneustic center in the lower portion of the structure appears to regulate breathing intensity by stimulating and prolonging the inspiratory part of respiration. At the same time, the pneumotaxic center exerts an inhibitory influence on inspiration which can decrease the depth and frequency of breaths.

TheHealthBoard is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

TheHealthBoard, in your inbox

Our latest articles, guides, and more, delivered daily.

TheHealthBoard, in your inbox

Our latest articles, guides, and more, delivered daily.