Fitness
Fact-checked

At TheHealthBoard, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

Learn more...

What is Energy Metabolism?

Jessica Gore
Jessica Gore

Energy metabolism is generally defined as the entirety of an organism's chemical processes. These chemical processes typically take the form of complex metabolic pathways within the cell, generally categorized as being either catabolic or anabolic. In humans, the study of how energy flows and is processed in the body is termed bioenergetics, and is principally concerned with how macromolecules such as fats, proteins, and carbohydrates break down to provide usable energy for growth, repair, and physical activity.

Anabolic pathways use chemical energy in the form of adenosine triphosphate (ATP) to power cellular work. The building of macromolecules out of smaller components, such as the synthesis of proteins from amino acids, and the use of ATP to power muscular contraction are examples of anabolic pathways. To power anabolic processes, ATP donates a single phosphate molecule, releasing stored energy in the process. Once a working cell's supply of ATP is depleted, more must be generated by catabolic energy metabolism for cellular work to continue.

Cells are powered by ATP, which is mostly synthesized by mitochondria.
Cells are powered by ATP, which is mostly synthesized by mitochondria.

Catabolic pathways are those that break down large molecules into their constituent parts, releasing energy in the process. The human body is able to synthesize and store its own ATP through both anaerobic and aerobic energy metabolism. Anaerobic metabolism takes place in the absence of oxygen, and is associated with short, intense bursts of energy. Aerobic metabolism is the breakdown of macromolecules in the presence of oxygen, and is associated with lower intensity exercise, as well as the daily work of the cell.

Adenosine triphosphate enables the movement of food through the digestive tract.
Adenosine triphosphate enables the movement of food through the digestive tract.

Anaerobic energy metabolism occurs in two forms, the ATP-creatine phosphate system and fast glycolysis. The ATP-creatine phosphate system uses stored creatine phosphate molecules to regenerate ATP that has been depleted and degraded to its low-energy form, adenosine diphosphate (ADP). The creatine phosphate donates a high-energy phosphate molecule to the ADP, thereby replacing spent ATP and re-energizing the cell. Muscle cells typically contain enough free-floating ATP and creatine phosphate to power approximately ten seconds of intense activity, after which the cell must switch to the fast glycolysis process.

Fatty acid oxidation powers long-duration activites like marathon running.
Fatty acid oxidation powers long-duration activites like marathon running.

Fast glycolysis synthesizes ATP from glucose in the blood and glycogen in the muscle, with lactic acid produced as a byproduct. This form of energy metabolism is associated with brief, intense bursts of activity &mash; such as power lifting or sprinting — when the cardio-respiratory system does not have time to deliver adequate oxygen to the working cells. As fast glycolysis progresses, lactic acid accumulates on the muscle, causing a condition known as lactic acidosis or, more informally, muscle burn. Fast glycolysis produces the majority of ATP that is used from ten seconds to two minutes of exercise, after which time the cardio-respiratory system has had opportunity to deliver oxygen to the working muscles and aerobic metabolism begins.

Muscle burn occurs as fast glycolysis progresses.
Muscle burn occurs as fast glycolysis progresses.

Aerobic metabolism takes place in one of two ways, fast glycolysis or fatty acid oxidation. Fast glycolysis, like slow glycolysis, breaks down glucose and glycogen to produce ATP. Since it does so in the presence of oxygen, however, the process is a complete chemical reaction. While fast gycolysis produces two molecules of ATP for every glucose molecule metabolized, slow gycolysis is able to produce 38 ATP molecules from the same amount of fuel. As there is no lactic acid accumulation during the reaction, fast glycolysis has no associated muscle burn or fatigue.

Sprinters and other athletes who need a burst of speed over a short distance have well-developed fast twitch muscle fibers.
Sprinters and other athletes who need a burst of speed over a short distance have well-developed fast twitch muscle fibers.

Finally, the slowest and most efficient form of energy metabolism is fatty acid oxidation. This is the process used to power activities such as digestion and cellular repair and growth, as well as long-duration exercise activities, such as marathon running or swimming. Rather than using glucose or glycogen as fuel, this process burns fatty acids that are stored in the body, and is capable of producing as many as 100 ATP molecules per unit of fatty acids. While this is a highly efficient, high-energy process, it requires large amounts of oxygen and only occurs after 30 to 45 minutes of low-intensity activity.

Discussion Comments

anon333999

How does the cardiovascular system relate to energy metabolism??

Moldova

Mutsy- You can test your metabolism by seeing an endocrinologist who can evaluate the hormonal levels in your thyroid.

Energy metabolism in animals and man can involve distance running for running for extended periods of time. This is another speed metabolism that you can also develop.

Sometimes the use of energy supplements also has a positive impact on cellular energy metabolism.

mutsy

Basal metabolism is the energy expended throughout the day. Energy supplements as well as the development of lean muscle mass also develop the energy muscle and raise the metabolic rate.

When you have a faster metabolism you tend to maintain your weight well and have increased energy during the day.

However, if you metabolism is exceeding high, you will tend to burn calories at a faster than average timeframe and tend to have an underweight body frame as a result. These are people that seem to eat whatever they want and never gain an ounce.

Post your comments
Login:
Forgot password?
Register:
    • Cells are powered by ATP, which is mostly synthesized by mitochondria.
      By: Mopic
      Cells are powered by ATP, which is mostly synthesized by mitochondria.
    • Adenosine triphosphate enables the movement of food through the digestive tract.
      By: maya2008
      Adenosine triphosphate enables the movement of food through the digestive tract.
    • Fatty acid oxidation powers long-duration activites like marathon running.
      By: Mikael Damkier
      Fatty acid oxidation powers long-duration activites like marathon running.
    • Muscle burn occurs as fast glycolysis progresses.
      By: adam121
      Muscle burn occurs as fast glycolysis progresses.
    • Sprinters and other athletes who need a burst of speed over a short distance have well-developed fast twitch muscle fibers.
      By: Valeriy Velikov
      Sprinters and other athletes who need a burst of speed over a short distance have well-developed fast twitch muscle fibers.
    • Fat, protein and carbohydrates break down to provide energy.
      By: Maridav
      Fat, protein and carbohydrates break down to provide energy.