We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Perimysium?

By Jessica Gore
Updated Mar 03, 2024
Our promise to you
The Health Board is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At The Health Board, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Perimysium is a membrane that protects and supports groups of fibers within skeletal muscle. Together with other supporting membranes, the perimysium is responsible for shaping and organizing the muscle fibers, as well as transmitting forces within the muscle. Connective tissue, including the supporting membranes, as well as the tendons, is estimated to make up roughly 15% of the mass of an individual muscle.

Typically, perimysial tissue is comprised of collagen and elastin fibers embedded in a mucopolysaccharide base. Collagen fibers give the tissue strength, while the elastin fibers, not surprisingly, promote elasticity. The base material acts as both glue and lubricant, simultaneously holding the structure together and allowing the fibers to move easily against one another.

Most mammals have three types of muscle tissue — cardiac, skeletal, and smooth. Human skeletal muscle, which attaches to the bones and is responsible for their movement, makes up the highest proportion of muscle tissues in the body. This type of muscle tissue is distinguished from the other two in a number of ways, not the least of which being its hierarchy of organization. Muscle components are grouped into increasingly complex structures, bound and supported by connective tissue.

Each muscle fiber is a single cell, covered by a gossamer membrane known as the endomysium. Muscle fibers are grouped into bundles, known as fascicles, which are encased by the perimysium. Each fascicle typically contains about 100 to 150 muscle fibers, with a wide degree of variation. Numerous fascicles together make up the muscle belly, which is wrapped in a tough, membranous coating known as the epimysium. The endomysium, perimysium, and epimesium together are known as the fascia of the muscle.

Like the muscle itself, the collagen and elastin fibers of the perimysium appear to have a three-tiered structure, with each level of organization built upon the one before it. Coarse, crimped fibers run lengthwise as well as circularly, encasing the entire fascicle like a fishnet stocking. Branching out from this framework, numerous uncrimped collagen fibrils form a loose, delicate sheath that covers all of the fascicle surface. Finally, fine bundles of fibrils attach adjacent muscle fibers to each other, and to the endomysium, using minute structures known as perimysial junction plates.

The muscle fascia provides a framework that supports the muscle fibers and protects them from damage due to over-stretching. At rest, most of the perimysial fibers lay at about a 60 degree angle to the muscle fibers. When the muscle is stretched, these fibers lose their crimped appearance and the angle decreases to follow the line of force. In this way, the perimysium absorbs and distributes forces, reducing stress to the muscle fibers. When the external force is removed, the fascia allows the muscle fibers to regain their original orientation.

In addition to providing structure and support, the perimysium can create pathways within the muscle. Running between the fascicles, the perimysium forms tunnels of connective tissue, known as the intramuscular septa. These conduits accommodate the arterioles, venules, and nerves that service the muscle.

An increase in muscular connective tissue is associated with both aging and inactivity. Over time, the proportion of elastin to collagen fibers within the fascia decreases, as does the degree of lubrication provided by the mucopolysaccharide base. Thus, aging and inactivity are often associated with an overall loss of flexibility. This trend can usually be slowed or reversed by regular flexibility exercises, such as yoga, Pilates, or simple daily stretching.

The Health Board is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.

The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.