We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Radiation Physics?

By Brenda Scott
Updated Mar 03, 2024
Our promise to you
The Health Board is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At The Health Board, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Physics is the scientific study of matter and energy, and their interaction. Energy, such as light, heat or sound, which is emitted from one source, travels through space or material, and then is absorbed by another object, is defined as radiation. Radiation physics is the branch of physics that studies the effects of radiation on matter. This field has been instrumental in providing improved manufacturing processes, nuclear energy, and advanced medical diagnostic and treatment options.

The types of radiation studied by physicists include alpha, beta, and gamma rays, neutrons and x-rays. Alphas are particles containing two protons and two elections which are emitted from the nucleus of an atom. Betas are high speed particles which appear identical to electrons. Neutrons are the neutral particles within the nucleus of all cells. Gamma rays are emitted by the nucleus, and x-rays are a result of energy changes in the nucleus.

X-ray technology is one of the most familiar applications of radiation physics, and has several manufacturing applications. For example, the automobile industry uses high energy x-rays to evaluate engine performance. X-ray microscopes are used to inspect stents and catheters during the production process, and x-ray thickness gauges measure the chemical composition of metal alloys. X-ray radiography is even used by archaeologists to examine ancient artifacts.

The oil industry has employed radiation physics applications in the treatment and production of petroleum. Oil companies use a radiation process called radiation thermal cracking (RTC) during the production of crude oil, fuel oil, tar and the treatment of the waste byproducts of oil extraction. RTC has a higher production rate, lower cost, and much lower energy consumption than tradition methods. Radiation treatment of oil contaminants provides greater environmental protection than other methods.

Nuclear energy is a growing field which is based on applied radiation physics. Through a process known as nuclear fission, energy is extracted from atoms during controlled nuclear reactions. While the United States produces the largest quantity of nuclear power, France produces the highest percentage of its nation’s electrical supply through nuclear reactors.

The field which has benefited the most from radiation physics, however, is medicine. Through the application of physics, scientists have developed methods of using ionizing radiation for diagnosing and treating medical conditions. This includes not only the traditional forms of x-rays, but also ultrasound, magnetic resonance imaging (MRI) and nuclear medicine.

The majority of nuclear medicine involves imaging and employs computers, sensors and radioactive materials called radiopharmaceuticals. X-rays, the oldest form of imaging, uses high frequency light rays to construct images. Gamma rays have even higher frequencies, and are used in nuclear imaging. Positron emission tomography (PET) and single photon emission computer tomography (SPECT) are two of the most widely used pieces of nuclear imaging equipment.

The most common use of radiation therapy is the for treatment of cancerous tumors. This usually involves depositing high energy x-rays into the cancer cells. The radiation is absorbed by the cell, causing it to die. Radiation is generally delivered to the tumor through an external source. The challenge for medical physicists is to direct the radiation in such a way that the minimum number of healthy cells are destroyed.

Radiation brachytherapy involves the internal application of radiation materials. In this treatment, radioactive “seeds” are implanted near the tumor. The release of radiation is slow, and the distance between the seeds and tumor is short enough that the radiation exposure to healthy cells is limited.

The benefits of radiation physics cross several disciplines and industries. Concerns over potential depletion of fossil fuels make the development of nuclear energy an on-going priority in many nations. The field of nuclear medicine is exploding, with new tests and treatments being developed rapidly, making radiation physics a discipline that will continue to grow.

The Health Board is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By anon225725 — On Oct 28, 2011

Actually the atomic nucleus is not in the center of the cell, the nucleus of the cell contains DNA and within the DNA there are different atoms, and within these atoms there are nuclei of protons and neutrons.

By lovelife — On Mar 14, 2011

I am studying to become and X-Ray technician. I just read about Marie Curie, Pierre Curie and Henri Becquerel. Were it not for these physicists from the late 1800's and early 1900's, we might not have the advances that this discovery has allowed us, especially in the medical world.

It's sad, our text-book says they actually passed away very young from radiation exposure. I am thankful that although dangerous, it is much safer today because of the trial and error of people like these physicists.

The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.

The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.